In abstract algebra, a partially ordered group is a group (G,+) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if a ≤ b then a+g ≤ b+g and g+a ≤ g+b.
An element x of G is called positive element if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and it is called the positive cone of G. So we have a ≤ b if and only if -a+b ∈ G+.
By the definition, we can reduce the partial order to a monadic property: a ≤ b if and only if 0 ≤ -a+b.
For the general group G, the existence of a positive cone specifies an order on G. A group G is a partially ordered group if and only if there exists a subset H (which is G+) of G such that:
A partially ordered group G with positive cone G+ is said to be unperforated if n · g ∈ G+ for some natural number n implies g ∈ G+. Being unperforated means there is no "gap" in the positive cone G+.
If the order on the group is a linear order, then it is said to be a linearly ordered group. If the order on the group is a lattice order, i.e. any two elements have a least upper bound, then it is a lattice-ordered group.
A Riesz group is a unperforated partially ordered group with a property slightly weaker than being a lattice ordered group. Namely, a Riesz group satisfies the Riesz interpolation property: if x1, x2, y1, y2 are elements of G and xi ≤ yj, then there exists z ∈ G such that xi ≤ z ≤ yj.
If G and H are two partially ordered groups, a map from G to H is a morphism of partially ordered groups if it is both a group homomorphism and a monotonic function. The partially ordered groups, together with this notion of morphism, form a category.
Partially ordered groups are used in the definition of valuations of fields.
Contents |